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Genetic variants influencing the transcriptome have been exten-
sively studied. However, the impact of the genetic factors on the
human proteome is largely unexplored, mainly due to lack of suit-
able high-throughput methods. Here we present unique and com-
prehensive identification of genetic variants affecting the human
plasma protein profile by combining high-throughput and high-
resolution mass spectrometry (MS) with genome-wide SNP data.
We identified and quantified the abundance of 1,056 tryptic-
digested peptides, representing 163 proteins in the plasma of
1,060 individuals from two population-based cohorts. The abun-
dance level of almost one-fifth (19%) of the peptides was found to
be heritable, with heritability ranging from 0.08 to 0.43. The levels
of 60 peptides from 25 proteins, 15% of the proteins studied, were
influenced by cis-acting SNPs. We identified and replicated individ-
ual cis-acting SNPs (combined P value ranging from 3.1 × 10−52 to
2.9 × 10−12) influencing 11 peptides from 5 individual proteins.
These SNPs represent both regulatory SNPs and nonsynonymous
changes defining well-studied disease alleles such as the e4 allele
of apolipoprotein E (APOE), which has been shown to increase risk
of Alzheimer’s disease. Our results show that high-throughput
mass spectrometry represents a promising method for large-scale
characterization of the human proteome, allowing for both quan-
tification and sequencing of individual proteins. Abundance and
peptide composition of a protein plays an important role in the
etiology, diagnosis, and treatment of a number of diseases. A better
understanding of the genetic impact on the plasma proteome
is therefore important for evaluating potential biomarkers and
therapeutic agents for common diseases.

protein quantitative trait loci | population proteomics

Our understanding of the impact of genetic variation on hu-
man traits has been greatly advanced using high-throughput

SNP genotyping and massively parallel sequencing. The large
number of genome-wide association studies (GWAS) performed
have resulted in the identification of hundreds of SNPs that are
associated with human traits and diseases (1, 2). The functional
impact of most of the SNPs influencing human traits has not
been well characterized. Whereas nonsynonymous SNPs affect
the amino acid sequence directly and could alter the function of
the resulting protein, other SNPs may have an impact on splice
sites (3) or influence amount or stability of the mRNA (4). GWAS
studies relating the genetic variability to the transcript profile have
identified a number of cis-regulatory SNPs affecting expression
quantitative traits (eQTs) (5, 6). Evidently, the expression of many
genes is influenced by a nearby SNP, with cis-regulatory SNPs
being overrepresented among SNPs associated with human phe-
notypes (1). Studies have also addressed the impact of genetic
variability on levels of endogenous metabolites, such as sugars,
biogenic amines, acylcarnitines, and glycerophospho- and sphin-
golipids, which can be measured in either human urine or plasma.
These studies have identified a series of metabolic quantitative
trait loci (mQTL) affecting the level of these biomolecules (7, 8).
By contrast, genome-wide analyses of the impact of genetic

variability on the proteome profile have been missing, due to
methodological limitations. A recent study in mouse fibroblasts
(9) estimates that mRNA levels explain around 40% of the

variability in protein levels, underscoring the need for studies
directly addressing the correlation between the genetic and the
proteome profiles. Most studies of the effect of genetic variation
on the proteome profile have focused on single proteins or
a limited set of proteins. Studies of selected proteins, e.g., those
affecting the immune response or biomarkers for a specific dis-
ease, have demonstrated the presence of protein quantitative
trait loci (pQTL) (10–12), i.e., genetic variants impacting protein
expression. The main limitation in the identification of pQTL
has been access to high-throughput methods in proteomics to
study the abundance of individual proteins in human clinical
samples, which can be applied to the analysis of large cohorts.
In this paper we have used high-throughput high-resolution

mass spectrometry (MS) to identify and quantify peptides in
plasma frommore than 1,000 individuals from a population-based
study. We have identified genetic determinants of the peptide
profile using genome-wide SNP data. To our knowledge, this is the
largest study to date using MS to quantify peptides and assess the
genetic determinants of the human plasma proteome. Our results
show that abundance of a large number of the plasma proteins is
heritable and affected by genetic variants.

Results
Heritability of the Plasma Proteome.A total of 1,056 tryptic digested
peptides were identified and quantified by high-throughput high-
resolution mass spectrometry in the plasma samples from 1,060
individuals. A total of 87.3% of the peptides were unique to one
protein (using the September 2011 release of the International
Protein Index database) (13). This is similar to what was found for
peptides in the Human Plasma Proteome Project (88.3%, SI
Methods). Our peptides mapped to 163 plasma proteins, with an
average of 6.4 peptides per protein and a range from 1 to 173
peptides per protein (Table S1). A total of 1,029 individuals passed
the genotyping quality control, had peptide values measured, and
represent the basis of the analyses. More than 93% of the peptides
(n = 989) were detected in at least 400 individuals and used in the
association analyses. We first tested the correlation between the
peptide values and covariates such as sex, age, body mass index
(BMI), allergy, lipid lowering treatment, and antihypertensive
treatment. Of the 989 peptides tested, 226 were significantly
influenced by age, 29 by BMI, and 24 by sex [false discovery rate
(FDR) q value <0.05]. None of the peptides was influenced by
allergy status, lipid lowering, or antihypertensive treatment (FDR
q value >0.05 for all peptides). In a further analysis we used sex,
age, and BMI as covariates.
In the total dataset (both cohort KA06 and KA09), 190 (19%)

peptides (FDR q value <0.05) showed a significant heritability
(Fig. 1), with heritability estimates ranging from 0.08 to 0.43
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(Table S2). The 190 heritable peptides were derived from 57
proteins, and consequently 35% of the proteins identified had at
least one peptide showing a significant heritability. The highest
heritability was found for a peptide from the complement 3
(CO3) protein (h2 = 0.43), encoded by the C3 gene, followed
by a peptide from the Alpha-2-macroglobulin (FETUA) protein
(h2 = 0.42).

Identification of cis-pQTL. To identify cis-pQTL we performed an
association analysis using the discovery cohort (KA06) and found
1,815 genome-wide significant SNPs distributed over 32 peptides
from 16 proteins (Table S3). The inflation factor lambda for the
association analyses was 1.0054 in the discovery cohort con-
firming that the results are not due to internal population
structuring. The top SNP for 11 of these 32 peptides showed
a significant association also in the replication cohort (KA09)
(Table 1). About half (5/11) of the associated SNPs either
themselves result in an altered amino acid sequence of the
peptide or are in high linkage disequilibrium (LD) with a non-
synonymous SNP (nsSNP) located in the same peptide region.
This number is substantially higher than the genome-wide frac-
tion (0.0022%) of SNPs that are either themselves a non-
synonymous SNP or in LD with a nonsynonymous SNP (SI
Methods). Among the associations identified, that of rs2230203
(reference SNP number) with one peptide in CO3, and rs429358
with one peptide in apolipoprotein E (APOE), both represent
nonsynonymous SNPs changing an amino acid.
A second group of SNPs is associated with the abundance of

multiple, nonoverlapping, peptides from the same protein (Fig.
2A). For instance, five different peptides from the Haptoglobin
protein (HPT) were strongly associated with three SNPs in high
LD with each other (rs217181, rs217184, and rs77303550, pair-
wise R2 > 0.95). Using a more relaxed threshold for genome-
wide significance in the KA06 cohort, we found that each of
these SNPs was associated with 16 of the 40 HPT peptides
quantified (Fig. 3). It should be noted that the minor allele in
rs217184 has a positive effect on all but one (HYEGSTVPEK)
peptide. This exception is most likely due to an association with
another SNP (not present in our dataset) that is negatively cor-
related with rs217184. Although many of the HPT peptides are
associated with this SNP, the pairwise correlation between pep-
tide measurements is quite modest (Fig. 3), with a maximum
correlation coefficient of 0.71. However, it is obvious that a set of
peptides (10 to 15 in Fig. 3), which are highly correlated, also show
a similar association with the top SNP (rs217184). The Manhattan
plot of P values across the ∼200-kb region surrounding the hap-
toglobin (HP) gene encoding the HPT protein for the different
peptides, shows two peaks with SNPs located on both sides of
the gene (rs77303550 and rs217184/rs217181) (Fig. S1A). When
studying the distribution of the association signal relative to the

location of the peptides, the highest signal was found for SNPs
located in or near exons 3 and 5 of the HP gene. The strong LD
between the three top SNPs indicates that any of these three,
a combination of all three, or other SNPs (which are not present
on the SNP array, not imputed with high enough certainty, or not
present in the reference panels used for the imputations) is af-
fecting the expression of the HP gene. A similar situation is found
for FETUA, encoded by the alpha-2-HS-glycoprotein (AHSG)
gene (Table 1), where the minor allele of rs2070635 is nominally
associated with abundance of 5 of the 16 peptides quantified,
suggesting that this might represent a regulatory SNP influencing
the protein level.
For a third group of proteins, several SNPs not in LD with

each other, showed an association with the abundance of dif-
ferent peptides from the same protein. For example, a number of
SNPs were associated with the abundance of different (non-
overlapping) peptides of the Alpha-1-antitrypsin (A1AT) protein
encoded by the serpin peptidase inhibitor, clade A, member
1(SERPINA1) gene (Fig. S2). Of the three SNPs that showed the
strongest association with A1AT peptides (Table 1), two
(rs709932 and rs17090693) showed a high genetic correlation
(R = 0.73), whereas the third (rs1243165) had a lower, but still
significant, correlation (R = −0.31 between rs1243165 and
rs17090693 and R = −0.21 between rs1243165 and rs709932) (P <
4.7 × 10−12 for all correlations). The Manhattan plot of P values
across the SERPINA1 region (Fig. S1B) for the different peptides
shows that the association pattern differs between SNPs. Both
rs709932 and rs17090693 showed an effect on the same two
peptides: IVDLVKELDRDTVFALVNYIFFK (Fig. 2B, P2) and
TLNQPDSQLQLTTGNGLFLSEGLK (Fig. 2B, P3). When
adjusting for the strongest association for each of these two pep-
tides, no association was seen for the other SNP (P > 0.05). The
third SNP, rs1243165, showed the strongest association to one
peptide: DTEEEDFHVDQVTTVK (Fig. 2B, P1). This variation
in association pattern between SNPs in SERPINA1 is not sur-
prising because rs709932 and rs1243165 either directly change the
amino acid of a peptide or disrupt the trypsin cleavage site (Table
1). rs17090693 on the other hand is not located in the region
coding for the IVDLVKELDRDTVFALVNYIFFK peptide (or
known to be in LD with). However, there is a variant form of the
A1AT protein, which has the amino acid sequence QGKIVDLVK
instead of GFQNAILVR at positions 190–198 (14). Because the
IVDLVKELDRDTVFALVNYIFFK peptide is located at posi-
tion 193–215 of the protein, it is possible that rs17090693 tags the
underlying genetic variant that results in the aberrant A1AT
protein. Similar to the pattern for HPT, the peptides of the pro-
teins A1AT, FETUA, APOE, and CO3 also showed limited cor-
relation within each protein (Fig. S3). Of the 5 proteins with a
significant association, 4 overlap with an eQTL previously identi-
fied in monocytes (15). The only pQTL not overlapping with an
eQTL is the AHSG gene (FETUA protein). This gene is pre-
dominantly expressed in liver and the transcripts might not be
measurable in blood cells. Because our genetic data has been
imputed using the 1000 Genomes reference panels, we have in-
formation on most of the SNPs reported as eQTL by Zeller et al.
(15). We also tested if known eQTL were enriched for nominally
significant (unadjusted P value <0.05) associations in our dataset.
In the dataset by Zeller et al. (15), 48 of our 163 proteins were
represented by an eQTL. From each of these eQTL, the top SNP
was examined for association in our protein data. We found 7.0%
of the top SNPs to be associated with a protein, compared with
the 5.0% expected by chance (P = 0.18). These results do not
indicate a significant enrichment of pQTL overlapping with
previously reported eQTL.
In total, by applying a genome-wide significance threshold in

KA06 and the requirement of replication in an independent
sample (KA09), 11 peptides showed a significant association.
However, the distribution of P values in the combined analyses
(KA06 and KA09 together) indicate that altogether 60 peptides
from 25 proteins of the 163 proteins detected (15%) are influ-
enced by genetic variation acting in cis (FDR q value <0.05). To

Fig. 1. Heritability of peptide abundance levels. Histogram of estimated
heritabilities for all peptides. The dark green indicates significant observa-
tions (FDR P value <0.05).
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validate theMS values by an independentmethod, we used data for
APOE levels determined by immunoassay for the same cohorts.
The abundance measured by MS of the APOE peptide associated
with rs429358 (Table 1) showed a significant correlation (R2= 0.22,
P value = 2.16 × 10−9) with the level of APOE determined
by immunoassay, supporting the robustness of the quantitative
MS data.

Discussion
Studies of the impact of genetic variability on the protein profile
require access to high-throughput methods in both proteomics
and genomics. So far, MS methods have been used mainly to
quantify a selected number of proteins in a limited number of
individuals or for comparison of the protein profile in pools of
individuals. In this study, we have used high-resolution and high-
throughput MS to quantify more than a thousand peptides in
each of over 1,000 individuals from a population with a high
degree of relatedness and a known genetic structure. This is not
only one of the largest studies of the human plasma proteome,
but also a unique study in assessing the association between cis-
regulatory SNPs and the abundance of individual peptides. In
contrast to most studies where measurements of peptide levels
are combined into a single estimate for each protein, we con-
sidered the genetic association with abundance level of single
peptides, because these may be dramatically influenced by non-
synonymous SNPs in individual peptides. By combining the
abundance of peptide values from MS into a single protein value,
the effect of amino acid changes on the peptide levels will be
obscured and, as a consequence, it may be difficult (or impos-
sible) to determine if an association between protein abundance
and a genetic variant is due to a structural variant of the protein
or a regulatory effect on transcription or translation. Indeed, for
about 50% of the associations on a peptide level, we did identify
a possible amino acid change. In addition, most genes give rise to
a number of alternatively spliced transcripts, resulting in a set of
proteins with different combinations of peptides and, finally,
some peptides might map to more than one protein (e.g.,

proteins with identical or similar regions). Consequently, the
analysis undertaken here provides the highest resolution of the
plasma proteome.
Peptide amounts showed significant heritability for 35% of the

proteins studied, indicating a surprisingly strong impact of ge-
netic variability on the protein profile. The percentage of proteins
showing significant heritability was lower than the estimated
heritability of transcript levels (6), consistent with a lower cor-
relation between the genetic profile and protein level compared
with transcript level (9). Several of the peptides with the highest
heritability were also found to show a significant genetic associ-
ation. Interestingly, some peptides in the quartile with the highest
heritability showed no genetic association, possibly due to a more
complex genetic contribution. This indicates that additional ge-
netic associations could be identified using a larger cohort size.
For 11 peptides, we identified and replicated SNP associations

that influence the abundance. In 5 of these 11 peptides, the top
SNP is either altering the amino acid sequence of the protein
or is in strong LD with a nonsynonymous SNP (Table 1). The
strongest association was seen for peptides in the A1AT protein.
A recent study demonstrated that A1AT plays an important role
in regulating metabolic pathways and that polymorphisms within
the SERPINA1 gene (which encodes the A1AT protein) have
been associated with atherosclerosis (16). Another set of strong
associations were seen for HPT, where several SNPs were as-
sociated with abundance of a number of peptides. The strongest
association was seen for three SNPs (rs217181, rs217184, and
rs77303550) located far apart on chromosome 16 (rs217181 is at
position 72114001, 19 kb downstream of the HP gene; rs217184 is
at position 72105965, about 11 kb downstream of HP; and
rs77303550 is at position 72079657, 9 kb upstream of HP), but in
more or less complete LD with each other. These three SNPs
identify a large LD block and could themselves, or another
variant in high LD with these, be causal. Because these SNPs
were associated with a number of peptides in HPT, it is likely
that they reflect a genetic polymorphism that regulates the level
of the protein, similar to previous studies of eQTL, where a large

Table 1. SNPs with a genome-wide significant association in the discovery cohort (KA06) and replicated in the second cohort (KA09)

UniProt ID (gene symbol) Peptide SNP Chr:position Freq KA06 beta* (SE)† P value KA09 beta* (SE)† P value Pooled P value‡

HPT (HP)
AVGDKLPECEAVCGKPK rs217184§ 16:72105965 0.18 0.56 (0.08) 1.7 × 10−12 0.46 (0.11) 1.5 × 10−5 8.0 × 10−17

GDKLPECEAVCGKPK rs77303550§ 16:72079657 0.18 0.47 (0.077) 1.6 × 10−9 0.39 (0.11) 2.4 × 10−4 1.5 × 10−12

TEGDGVYTLNDKK rs77303550§ 16:72079657 0.18 0.71 (0.08) 8.7 × 10−19 0.68 (0.11) 1.0 × 10−10 4.4 × 10−27

TEGDGVYTLNNEK rs217184§ 16:72105965 0.18 0.86 (0.08) 2.8 × 10−27 0.58 (0.13) 3.7 × 10−6 2.9 × 10−31

VDSGNDVTDIADDGCPKPPEIA
HGYVEHSVR

rs77303550§ 16:72079657 0.18 0.4 (0.078) 2.7 × 10−7 0.39 (0.11) 1.9 × 10−4 4.3 × 10−10

A1AT (SERPINA1)
DTEEEDFHVDQVTTVK{ rs1243165 14:94844305 0.21 −0.9 (0.075) 3.6 × 10−33 −0.6 (0.089) 1.5 × 10−11 3.9 × 10−41

IVDLVKELDRDTVFALVNYIFFK rs17090693 14:94841331 0.21 −0.88 (0.069) 5.9 × 10−37 −0.81 (0.096) 3.0 × 10−17 3.1 × 10−52

TLNQPDSQLQLTTGNGLFLSEGLKjj rs709932 14:94849201 0.13 −0.48 (0.08) 3.0 × 10−9 −0.57 (0.15) 1.7 × 10−4 2.9 × 10−12

CO3 (C3)
LLDGVQNPR** rs2230203 19:6710782 0.10 −0.85 (0.12) 4.2 × 10−13 −0.44 (0.12) 1.7 × 10−4 1.9 × 10−14

APOE (APOE)
LGADMEDVCGR†† rs429358 19:45411941 0.18 −0.52 (0.083) 6.3 × 10−10 −0.34 (0.10) 7.8 × 10−4 3.9 × 10−12

FETUA (AHSG)
HTFMGVVSLGSPSGEVSHPR‡‡ rs2070635 3:186336176 0.48 0.53 (0.057) 7.0 × 10−21 0.36 (0.081) 9.9 × 10−6 1.7 × 10−24

*Beta: The additive effect of the minor allele on the abundance level of the peptide.
†SE: SE of the effect (beta).
‡Pooled: KA06 and KA09 analyzed together.
§rs217184 and rs77303550 are in LD (R2 = 0.95).
{DTEEEDFHVDQVTTVK is located at position 226–241 of the protein. Position 237 has a natural variant, coded by the SNP rs6647, which is in LD with
rs1243165.
jjTLNQPDSQLQLTTGNGLFLSEGLK is located at position 126–149 of the protein. Position 125 has a natural variant, coded by our top SNP rs709932.
**LLDGVQNPR is located at position 307–315 of the protein. Position 314 has a natural variant coded by the SNP rs1047286, which is in LD with our top SNP
rs2230203.
††LGADMEDVCGR is located at position 122–132 of the protein. Position 130 has a natural variant, coded by our top SNP rs429358.
‡‡HTFMGVVSLGSPSGEVSHPR is located at position 318–337 of the protein. Position 317 has a natural variant, coded by the SNP rs35457250, which is not in
strong LD with our top SNP rs2070635. The P value for rs35457250 (P value = 5.1E-14 in the pooled analyses) is not as significant as our top SNP.
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number of SNPs in the region have been associated with the
transcription level of the HP gene (eQTL database: eqtl.uchicago.
edu (Generic Genome Browser version 1.68). None of our top
SNPs were analyzed in those studies, but the most significant SNP
in the eQTL analyses by Zeller et al. (15) is rs6499560, an
SNP that is also associated with the peptide levels in our data
(P value = 2.92 × 10−13). Haptoglobin is an Alpha-2-glycoprotein
that binds free hemoglobin and protects tissues from oxidative
damage and has been associated with a large number of disease
states, including cardiovascular diseases, diabetes, cancer, and
persistence of various infections (17), as well as regulation of se-
rum lipid levels (2, 18). Two different polymorphisms in the HP
gene have been suggested to play an important role in protein
activity. The first variant is characterized by a 1.7-kb duplication,
resulting in a duplication of exon 3 and exon 4 and generating
exon 5 and exon 6. The second polymorphism is two neighboring
SNPs within the duplicated region (changing two consecutive
amino acids). The latter polymorphism is the one measured by two
of our most significant peptides in HPT (TEGDGVYTLNDKK
and TEGDGVYTLNNEK). Unfortunately, neither our genotyped
SNPs nor any of the SNPs in the reference panels used for
imputations include the SNPs underlying these protein poly-
morphisms. The most common variant in Scandinavian pop-
ulations carries the duplication polymorphism, where exons 3
and 4 encode the TEGDGVYTLNDKK peptide and exons 5 and 6
encode the TEGDGVYTLNNEK peptide (19).
The method we used for peptide quantification is well estab-

lished and has been described in detail previously (20). What
differentiates our quantification study from those previously
performed using this methodology is the very large number of
samples included. The fact that it is based on such a large series
of samples makes it impossible to obtain quantitative estimates
using an independent method. To address the robustness of the
results using another method, we therefore verified the correla-
tion between one APOE peptide detected by MS and for which
we had quantitative protein data available based on an inde-
pendent method (immunoassay). The results for this limited
validation support the validity of the MS method for protein
quantification.

Plasma contains a large number of proteins, and their con-
centrations span at least 10 orders of magnitude (21). This means
that it is difficult to measure more than the 100 or so of the most
abundant proteins without depletion of the top proteins or en-
richment of low-abundant proteins and peptides from low-
abundant proteins (22). We used a spectral library for identifying
the peptides. Such libraries differ from sequence databases in the
sense that they combine spectra identified by different methods,
including semitryptic searches or even SNPs. Spectral libraries
have recently been proposed (23) as an archiving method for
storing and sharing observed peptides and their tandem mass
spectra. The libraries used in spectral analyses are still smaller
than searching all possible peptides, but do include common
variants and peptides resulting from semitryptic cleavage.
Consequently, a number of peptides that differ by semitryptic
cleavage are included in our dataset. The handling and processing
of plasma samples might affect the measurements, such as oxi-
dation of some peptides during handling. However, samples were
handled in random order and as consistently as possible using
cooled solvent to minimize oxidation and sample-to-sample var-
iability. The critical aspect is that there is no systematic bias due to
oxidation or other modifications introduced by the sample han-
dling and genotyping. However, it is important to realize that all
these potential uncertainties influence the accuracy of the peptide
quantification independently of the underlying cis-regulatory ge-
netic variants and will consequently only reduce the power of
identifying biologically significant associations rather than in-
troduce false positive associations.
We compared our results with eQTL, showing that four of five

of our associations were overlapping with a known eQTL,
whereas previously known eQTL were not enriched for low
P values in our dataset. This discrepancy is most likely due to the
more cell-specific localization of mRNAs compared with proteins
that are often released into the blood stream. However, protein
levels are mainly regulated at the level of translation and the
correlation between mRNA and protein concentrations is far
from perfect (9). In addition, different protein isomers (caused by
nsSNPs) might differ in their stability, causing differences in half-
life and protein levels, independent of the transcriptional and
translational regulation.
Our results demonstrate the potential of combining high-

throughput methods in proteomics and genomics to understand
the effect of genetic variability on the protein profile. This opens
up the possibility for systematic studies of the functional im-
portance of specific genetic variants on the protein. An evalua-
tion of the contribution of genetic variability on the protein
profile may also be important for specific proteins selected as
biomarkers for disease prediction, because genetic factors may
affect the risk estimate in an individual-specific manner. The
ability to detect single amino acid changes should be of great
interest in biomarker research. In our data, we detected variants
that have previously been associated with disease in man. For
instance, rs1047286 showing an association with peptide levels in
the C3 gene, has previously been associated with increased risk
of age-related macular degeneration (24). The peptide with an
amino acid change caused by this polymorphism was detected in
our data (Table 1). Similarly, the SNP rs429358 identified in our
data is located in the APOE gene and tags the e4 variant, a variant
associated with increased risk of Alzheimer’s disease (25). Further
developments of the methodology for MS proteome analyses
to include a larger number of peptides and peptides with
lower abundance levels, would make it possible to cover more of
the human plasma proteome and more precise quantitation. Also,
the SNP array data should be complemented by sequence data to
also include rare variants and structural variation. Nevertheless,
the results of our study demonstrate the presence of genetic var-
iants with a strong impact on the protein profile and the ability to
annotate their functional relevance in affecting the level of
gene products.

A

B

Fig. 2. Gene structure and location of the identified and quantified peptides.
(A) Peptides in HPT and the association between rs217184 and each peptide. (B)
Peptides in ATA1 and the association between three different SNPs (rs1243165,
rs709932, and rs17090693) and each peptide.
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Methods
Clinical Materials. The Northern Sweden Population Health Study (NSPHS) was
initiated in 2006 to provide a health survey of the population in the parish of
Karesuando, county of Norrbotten, Sweden, and to study the medical con-
sequences of lifestyle and genetics. This parish has about 1,500 inhabitants
who meet the eligibility criteria in terms of age (≥15 y), of which 719 indi-
viduals participated in the study (KA06 cohort). As a second phase of the
NSPHS, another 350 individuals from a neighboring village (Soppero) were
recruited in 2009 (KA09 cohort). For each participant in the NSPHS, blood
samples were taken (serum and plasma) and stored at −70 °C. DNA has been
extracted for genetic analyses. APOE levels for verification purposes have
been measured previously using multiplex immunoassay.

Ethical Considerations. The NSPHS study was approved by the local ethics
committee at the University of Uppsala (Regionala Etikprövningsnämnden,
Uppsala, 2005:325) in compliance with the Declaration of Helsinki (26). All
participants gave their written informed consent to the study including the
examination of environmental and genetic causes of disease. In cases where
the participant was not of age, a legal guardian signed additionally. The
procedure that was used to obtain informed consent and the respective
informed consent form have recently been discussed in light of present
ethical guidelines (27).

Plasma Protein Digestion. Aliquots of 5 μL of plasma from 1,060 individuals,
diluted to 20 μL in 50 mM ammonium bicarbonate (NH4HCO3) were
centrifuged 16,000 × g for 10 min in 5 °C. From the supernatant, 16 μL was
digested following the previously published protocol (28). Briefly the plasma
samples were transferred into a 96-well plate. A volume of 10 μL of 45 mM
aqueous dithiothreitol was added to all samples and the mixtures were in-
cubated at 50 °C for 15 min to reduce the disulfide bridges. The samples
were cooled down to room temperature and 10 μL of 100 mM aqueous
iodoacetamide was added and the mixtures were incubated for an addi-
tional 15 min at room temperature in darkness to carabamidomethylate the
cysteines. Finally, a volume of 10 μL of 50 mM NH4HCO3 was added together
with trypsin to yield a final trypsin/protein concentration of 0.8% (wt/wt).

The tryptic digestion was performed at 37 °C overnight in darkness for 12 h.
The digestion reaction was quenched by addition of 5 μL of 10% (vol/vol)
trifluoroacetic acid. The samples were then centrifuged for 20 min to spin
down undigested material and stored at −80 °C before capillary liquid
chromatographic MS/MS analysis.

MS. The plasma protein digests were analyzed using an Fourier transform ion
cyclotron resonance (FTICR)-ion trap cluster (20). First, 2 μL of a reference
plasma tryptic digest was loaded and desalted on a PepMap C18 trap column
(5 mm, 300 mm i.d.; Dionex), separated by a 150-min reversed-phase chro-
matographic gradient from 4% to 33% (vol/vol) acetonitrile in 0.05% formic
acid and a constant flow rate of 4 mL/min using a ChromXP C18 column (15
cm, 300 μm i.d.; Eksigent) connected to a splitless NanoLC-Ultra 2D Plus
system (Eksigent) and analyzed by tandem MS (collision-induced dissocia-
tion) in an amaZon speed ion trap (Bruker Daltonics) to identify peptides
and measure their elution times. Each individual sample was then separately
measured on a 12 T solariX FTICR mass spectrometer (Bruker) and a shorter
(30 min) but otherwise identical gradient and chromatographic system to
quantify the peptides identified in the ion trap. Quantitative information
from FTICR-MS was extracted for all peptides identified. The data were
searched against the 2011 National Institute of Standards and Technology
(NIST) human ion trap spectral library (http://peptide.nist.gov) using Spec-
traST (23) with default settings, allowing a mass measurement error of 2.5
Da and assuming all cysteines were carbamidomethylated. All peptide values
were normalized as described in SI Methods.

SNP Genotyping and Imputation of Genome-Wide Data. DNA samples were
genotyped according to the manufacturer’s instructions on Illumina Infinium
HumanHap300v2 (n = 700) of Illumina Omni Express (n = 350) SNP bead
microarrays. Analyses of genotype raw data and quality control (QC) were
performed using the GenABEL package (29) and are described in SI Methods
and Fig. S4. A total of 1,032 individuals passed the QC of which 1,029 were
also included in the protein quantification. Genotype data were imputed
with a prephasing approach using IMPUTE (version 2.2.2) (30) in KA06 and
KA09 separately, using the 1000 Genomes Phase I integrated variant set

Fig. 3. Heatmap of pairwise correlation coefficients between HPT peptides. Each point in the heatmap represents the correlation coefficient between two
peptides ranging from R = −0.5 (white) to R = 1 (red). (Upper) Effect of rs217184 on the abundance level of each peptide is illustrated. Each peptide is
represented by the effect (beta) and the 95% confidence interval (CI) of the effect. The minor allele in rs217184 is associated with increased abundance levels
for 15 peptides (P value nominal <0.05) and with decreased abundance levels for one peptide. Observations where the CI does not include zero represent
nominally significant observations (P < 0.05). The color histogram (Upper Right) shows the distribution of correlation coefficients.
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(National Center for Biotechnology Information, build b37, March 2012) (31)
as reference panel as described in SI Methods). After QC of imputed data
7.83 M and 8.78 M SNPs remained in KA06 and KA09, respectively. For
comparing our results to previously reported eQTL, we downloaded lym-
phocyte eQTL by Zeller et al. (15) from eQTL database (http://eqtl.uchicago.
edu/Home.html). The coordinates for this dataset were lifted from HG18 to
HG19 using the University of California Santa Cruz liftOver tool (32) and
matched to our imputed data by position.

Statistical Analyses. Correlation between peptides and covariates were per-
formed using a linear regression model implemented in the function glm in
the stats library in R. FDRs were estimated using the fdrtool function
implemented in the fdrtool R library (33). Because the NSPHS is a population-
based study including related individuals, special care was taken to avoid
bias due to relatedness. All association analyses were performed using the R
package GenABEL or ProbABEL (29), which has been developed to enable
statistical analyses of genetic data of related individuals. It includes functions
for measuring correlation coefficients between variables among related
individuals (using a linear mixed-effects model), estimating the heritability
(using a polygenic model) and performing genetic association analyses (34)
by adjusting for pedigree structure using the kinship matrix. Before associ-
ation analyses, the values for each peptide were adjusted for age and BMI
and the residuals were transformed using the rank-based inverse normal
transformation. Only peptides that were detected in more than 400 indi-
viduals were analyzed. To identify cis-pQTL, a region of 100 kb upstream and
100 kb downstream of the gene coding for the protein was studied,
resulting in an average of 819 SNPs (ranging from 291 to 7,671) analyzed for

each protein. To be able to replicate our findings, we used the KA06 cohort
as a discovery cohort and KA09 for replication. For each peptide, the sig-
nificance for each SNP was adjusted for using Bonferroni correction for
multiple testing with respect to the number of SNPs tested per peptide (but
not the total number of peptides tested). The top SNP from each peptide
with Bonferroni adjusted significant P value was then evaluated in KA09.
The significance threshold in the replication phase was corrected for multi-
ple testing using the Bonferroni correction both with respect to the number
of SNPs and the number of peptides tested.
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